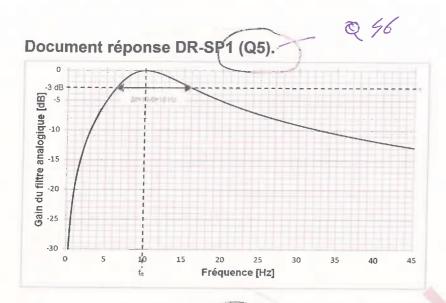
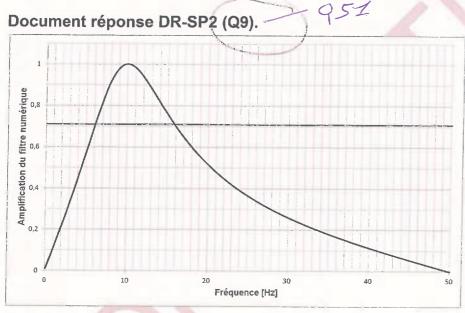
SCIENCES PHYSIQUES Correction et barème sur 40 points

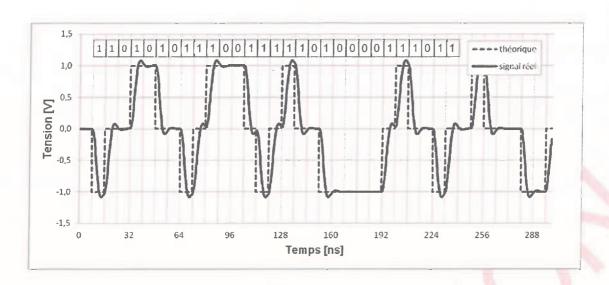
CORRECTION BARÈME


A	Capteur infrarouge de détection de flamme	5
Q42	[2300 cm ⁻¹ : 2400 cm ⁻¹]	2
Q43	$[4,17.10^{-4} \text{ cm} : 4,35.10^{-4} \text{ cm}] = [4,17 \mu\text{m} : 4,35 \mu\text{m}]$	2
Q44	Infrarouge ondes moyennes	1


В	Suppression de fausses alertes	15,5
Q45	Filtre passe-bande	1
Q46	Q = 10/(16-6) = 1 (cf document réponse DR-SP1)	3
Q47	$\begin{aligned} y_n &= \frac{1}{4,149} \big(x_n - x_{n-2} + 5,094 y_{n-1} - 2,149 y_{n-2} \big) \\ \text{Toute relation \'equivalente et faisant intervenir } y_n, \ y_{n-1}, \ y_{n-2}, \ x_n \\ \text{et } x_{n-1} \text{ sera accept\'ee.} \end{aligned}$	3
Q48	Filtre passe bande car les basses et hautes fréquences sont atténuées	1
Q49	La réponse impulsionnelle tend vers 0 lorsque n tend vers l'infini, le filtre est donc stable	2
Q50	Les modules de z_0 et z_1 valent 0,72 < 1, le filtre est donc stable	2
Q51	Q' = 10/(16-6) = 1. Cf document réponse DR-SP2	2
Q52	L'amplification est nulle lorsque f = 0 et f = 50 Hz, ces deux parasites sont éliminés. Les fréquences de scintillement des flammes étudiées (7 Hz à 15 Hz) sont dans la bande passante du filtre. Le cahier des charges est donc rempli.	1,5

Session 2017	BTS Systèmes Numériques Option B Électronique et Communications Épreuve E4	Page CR-SP 1 sur 4
Code: 17SN4SNEC1	Sciences Physiques - Corrigé	

С	Ligne de transmission	5						
Q53	Z_c = 104 Ω car la ligne est adaptée (pas de réflexion) sur l'oscillogramme Figure 10	2						
Q54	Sur l'oscillogramme Figure 9, v = (2*25 m)/(245 ns) = 2.10 ⁸ m/s							
Q55	Z_c est bien dans la plage 100±15 Ω et v = 0,75.v ₀ (nominal velocity)							
D	Décodage 100BASE-TX	14,5						
Q56	Risque de désynchronisation de l'horloge en NRZ si suite de 1 transmise	0,5						
Q57	$T_1 = 32 \text{ ns}, f_1 = 31,25 \text{ MHz}$	2						
Q58	f ₃ = 95 MHz, plage d'atténuation : 2,6 dB à 3,3 dB	1						
Q59	$T_b = 8 \text{ ns}, f_b = 125 \text{ MHz}$							
Q60	Cf document réponse DR-SP3	2						
Q61	Cf document réponse DR-SP4	2						
Q62	Cf document réponse DR-SP5	1						
Q63	Sans brouillage P _{sbmax} = 4 mW et avec brouillage P _{bmax} = 60 µW	1						
Q64	f _{sbmax} = 94 MHz et f _{bmax} = 45MHz	1						
Q65	Le signal brouillé émet donc moins de perturbations électromagnétiques, car P _{max} et f _{max} ont diminué	1						
Q66	D _u = 125*4/5 = 100 Mbps	1						
Q67	Le fait de coder diminue le débit de la transmission	1						


Session 2017	BTS Systèmes Numériques Option B Électronique et Communications Épreuve E4	Page CR-SP 2 sur 4
Code: 17SN4SNEC1	Sciences Physiques - Corrigé	

Document réponse DR-SP3 (Q17). – 960

Session 2017	BTS Systèmes Numériques Option B Électronique et Communications Épreuve E4	Page CR-SP 3 sur 4
Code : 17SN4SNEC1	Sciences Physiques - Corrigé	

Document réponse DR-SP4 (Q18).

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b _k	0	1	0	2	8	1	0	0	6	0	1	0	3	8	3	8	1	6	0	7	0
b' _k	0	1	0	0	0	1	0	0	0	0	1	0	1	0	1	0	1	0	0	1	0

Document réponse DR-SP5 (Q19) : $e_k = d_k \times b'_k$

d _k	0	0	1	0	0	0	4	1	1	1,0	0	1	0	1	1	1	1	0
b' _k	1	0	1	0	0	1	0	0	0	1	0	0	0	1	1	0	1	0
e _k	1	0	0	0	0	1	1	1	1	0	0	1	0	0	0	1	0	0

Session 2017	BTS Systèmes Numériques Option B Électronique et Communications Épreuve E4	Page CR-SP 4 sur 4
Code: 17SN4SNEC1	Sciences Physiques - Corrigé	